A New Class of SO(10) SUSY-GUT Models with TeV Scale W_R, Z'

Bhupal Dev

Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742, USA.

B.D., R. N. Mohapatra, *Phys. Rev. D* 81, 013001 (2010) [arXiv:0910.3924 [hep-ph]]; arXiv:1003.6102 [hep-ph].

Outline

- Introduction
- The SO(10) Model with TeV LR and Inverse Seesaw
- Radiative Symmetry Breaking
- Coupling Unification
- Testability of the Model
- Summary

Introduction

- LHC set to explore the nature of TeV scale New Physics beyond the SM.
- SUSY (especially MSSM) one of the prime candidates.
- An attractive feature of MSSM: Gauge coupling unification.
- Broader picture: Can any other new physics co-exist with TeV scale SUSY without spoiling the unification at high scale?
- An interesting possibility: weak interactions conserve parity asymptotically \Longrightarrow Left-Right symmetry [with gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$] at high scale.
- ◆ A natural extension of SM/MSSM to explain small neutrino masses via seesaw mechanism: B – L breaking by RH neutrino.

Low Scale LR Seesaw

Type I seesaw: SM singlet Majorana RH neutrino (N). [Minkowski '77; Yanagida '79; Glashow '79; Gell-Mann, Ramond, Slansky '80; Mohapatra, Senjanović '80]

$$\mathcal{L}_{\text{mass}} = (\overline{L}M_DN + \text{h.c.}) + NM_NN$$

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix}; \quad m_{\nu}^{\text{light}} = -M_DM_N^{-1}M_D^T$$

Sub-eV light neutrino mass \Longrightarrow TeV scale M_N possible only for $M_D \lesssim m_e$.

Low Scale LR Seesaw

Type I seesaw: SM singlet Majorana RH neutrino (N). [Minkowski '77; Yanagida '79; Glashow '79; Gell-Mann, Ramond, Slansky '80; Mohapatra, Senjanović '80]

$$\mathcal{L}_{\text{mass}} = (\overline{L}M_DN + \text{h.c.}) + NM_NN$$

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix}; \quad m_{\nu}^{\text{light}} = -M_DM_N^{-1}M_D^T$$

Sub-eV light neutrino mass \Longrightarrow TeV scale M_N possible only for $M_D \lesssim m_e$.

Inverse seesaw: Mostly Dirac N. Add another gauge singlet S. [Mohapatra '86; Mohapatra, Valle '861

$$\mathcal{L}_{\text{mass}} = (\overline{L}M_DN + \overline{N}M_NS + \text{h.c.}) + S\mu S$$

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M_N \\ 0 & M_N^T & \mu \end{pmatrix};$$

$$m_{\nu}^{\text{light}} \simeq \left(M_DM_N^{-1}\right)\mu\left(M_DM_N^{-1}\right)^T \text{ for } \mu \ll M_N$$

TeV scale M_N even with large $M_D \sim m_t$ due to the additional small parameter μ .

Grand Unification Prospects of TeV Scale Seesaw

- How does seesaw physics affect unification?
- Can seesaw physics co-exist with MSSM at TeV scale?
- SO(10): Natural GUT for LR seesaw as

$$SO(10) \supset SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

and its **16**-dim. spinor representation contains all the matter fermions, including the RH neutrino.

- Does TeV scale LR unify at SO(10) scale? If so, then LHC can possibly probe grand unification!!
- TeV type I seesaw does not grand unify! [Majee, Parida, Raychaudhuri, Sarkar '07-08; Kopp, Lindner, Niro, Underwood '09]
- New: TeV inverse seesaw does unify to SO(10). [B.D., Mohapatra'09]

Highlights

- A new SUSY SO(10) scenario with coupling unification.
- Simple fermion mass and mixing rules due to SO(10) symmetry.
- Small neutrino masses by inverse seesaw mechanism.
- Radiative breaking of both B L and electroweak symmetries.
- TeV scale W_R, Z' accessible at LHC. Also, distinct trilepton signal.
- Testable phenomenological consequences in the leptonic sector (non-unitarity, LFV, leptonic CPV etc.).
- Consistent with current proton decay bounds.

Inverse Seesaw in SO(10)

- Need two sets of SM singlet fermions N, S.
- All the SM fermions and RH neutrino are in a single 16_F spinor rep.
- Add a gauge singlet fermion $\mathbf{1}_F$ to play the role of S.
- Schematically, the SO(10) invariant Yukawa superpotential is

$$W_Y = h16_F16_F10_H + f16_F1_F\overline{16}_H + \mu1_F1_F$$

Inverse seesaw structure for the neutrino mass matrix:

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & hv_{u} & 0 \\ hv_{u} & 0 & f\overline{v}_{R} \\ 0 & f\overline{v}_{R} & \mu \end{pmatrix}; \text{ (with } \overline{v}_{R} \equiv \langle \overline{\mathbf{16}}_{H} \rangle, v_{u} \equiv \langle \mathbf{10}_{H} \rangle)$$

$$m_{\nu}^{\text{light}} \simeq \mu \left(\frac{h v_u}{f \overline{v}_R}\right)^2$$
 and $m_{\nu}^{\text{heavy}} \simeq f \overline{v}_R$ for $\mu \ll v_u \ll \overline{v}_R$

• Typical TeV-scale inverse seesaw: $\overline{V}_R \sim$ few TeV, $v_{tt} \sim 100$ GeV (electroweak scale). So sub-eV m_{ν} possible for $\mu \sim$ keV.

Breaking SO(10)

We consider the breaking chain

$$SO(10) \xrightarrow{M_G} \underbrace{\mathbf{3}_c \mathbf{2}_L \mathbf{2}_R \mathbf{1}_{B-L}}_{\text{(SUSYLR)}} \xrightarrow{M_R} \underbrace{\mathbf{3}_c \mathbf{2}_L \mathbf{1}_Y}_{\text{(MSSM)}} \xrightarrow{M_{SUSY}} \underbrace{\mathbf{3}_c \mathbf{2}_L \mathbf{1}_Y}_{\text{(SM)}} \xrightarrow{M_Z} \mathbf{3}_c \mathbf{1}_Q$$

- SO(10) is broken by 45_H and 54_H fields.
- B-L is broken by $\mathbf{16}_H + \overline{\mathbf{16}}_H$ fields (and not by $\mathbf{126}_H$).
- Electroweak symmetry is broken radiatively by 10_H fields.
- Fermion masses generated via Yukawa couplings to 10_H.
- Need at least two 10_H multiplets to get a realistic fermion mass spectrum.
- Also need to have a light vector-like color triplet of 45_H to satisfy proton decay constraints for unification scale.

Radiative Breaking of B - L and EW Symmetries

[B.D., Mohapatra '10]

- Start with a universal positive squared spartner mass at GUT scale.
- RGEs turn $m_{\Phi_1}^2$, $m_{\nabla^2}^2 < 0$ at low scale, while leaving all other squared masses positive.
- Much like in MSSM, $m_{H_U}^2$ turns negative to give rise to radiative EWSB.

Gauge Coupling Unification

$$[n_{10} = 2, n_{16_I} = 0, n_{16_R} = 2 \text{ and } M_{SUSY} = 300 \text{ GeV}, M_R = 1 \text{ TeV}]$$

[B.D., Mohapatra '09]

Compare with Type-I Case

Fermion Mass Spectrum

Generic SO(10) GUT relations satisfied:

$$\frac{m_b}{m_ au} \simeq 1, \; \frac{m_\mu}{m_s} \simeq 3, \; \frac{m_e}{m_d} \simeq \frac{1}{3}$$

LHC signatures

- TeV scale heavy RH neutrinos \implies can be produced on shell at hadron colliders.
- Pseudo-Dirac fermions (with small Majorana component), unlike in type I case (purely Majorana).
- The "smoking gun" LHC signature for type-I and III scenarios, $pp \to l_{\alpha}^{\pm} l_{\beta}^{\pm}$ +jets (LNV), will be suppressed in this case.
- Instead, one can expect to get observable LNC (but LFV) effects in channels with small SM background.
- Most distinctive signature is the trilepton event $pp \to l_{\alpha}^{\pm} l_{\beta}^{\pm} l_{\gamma}^{\mp} \nu(\overline{\nu})$ +jets.

[del Aguila, Aguilar-Saavedra, de Blas '09]

Non-Unitarity of the Neutrino Mixing Matrix

- Generalized PMNS matrix: $\mathcal{N} \simeq (1 \eta) U_{\text{PMNS}}$ where $\eta \simeq \frac{1}{2} \left(M_D M_N^{-1} \right) \left(M_D M_N^{-1} \right)^{\mathsf{T}}$.
- Current 90% C.L. bounds on $|\eta|$: [Antusch, Baumann, Fernández-Martínez '09]

$$|\eta| < \left(\begin{array}{cccc} 2.0 \times 10^{-3} & 3.5 \times 10^{-5} & 8.0 \times 10^{-3} \\ 3.5 \times 10^{-5} & 8.0 \times 10^{-4} & 5.1 \times 10^{-3} \\ 8.0 \times 10^{-3} & 5.1 \times 10^{-3} & 2.7 \times 10^{-3} \end{array} \right)$$

Non-Unitarity of the Neutrino Mixing Matrix

- Generalized PMNS matrix: $\mathcal{N} \simeq (1 \eta) U_{\text{PMNS}}$ where $\eta \simeq \frac{1}{2} \left(M_D M_N^{-1} \right) \left(M_D M_N^{-1} \right)^{\mathsf{T}}$.
- Current 90% C.L. bounds on $|\eta|$: [Antusch, Baumann, Fernández-Martínez '09]

$$|\eta| < \left(\begin{array}{cccc} 2.0 \times 10^{-3} & 3.5 \times 10^{-5} & 8.0 \times 10^{-3} \\ 3.5 \times 10^{-5} & 8.0 \times 10^{-4} & 5.1 \times 10^{-3} \\ 8.0 \times 10^{-3} & 5.1 \times 10^{-3} & 2.7 \times 10^{-3} \end{array} \right)$$

Predictions of our model (for diagonal M_N):

	m_{N_1}	m_{N_2}	m_{N_3}	$ \eta_{e\mu} $	$ \eta_{e au} $	$ \eta_{\mu au} $
ſ	1.1 TeV	1.1 TeV				6.5×10^{-5}
	100 GeV	100 GeV	1.1 TeV	7.9×10^{-7}	1.6×10^{-5}	$8.9 imes 10^{-5}$
	30 GeV	30 GeV	2.1 TeV	6.7×10^{-6}	4.4×10^{-5}	3.2×10^{-4}

- $|\eta_{e\mu}|$ bound reachable at future neutrino factories (sensitivities up to 3.2×10^{-7}) [van der Schaaf '03] and also in the PRISM/PRIME project. [PRIME Working Group '05]
- The largest value of $|\eta_{u\tau}|$ may also be accessible to short baseline neutrino oscillation experiments. [Malinsky, Ohlsson, Xing, Zhang '09]

Lepton Flavor Violation Effects

The heavy neutrinos N_i mediate the rare lepton decays, $I_{\alpha}^- \to I_{\beta}^- \gamma$ with

$$\mathrm{BR}(I_{\alpha} \to I_{\beta} \gamma) \simeq \frac{\alpha_W^3 s_W^2 m_{l_{\alpha}}^5}{256 \pi^2 M_W^4 \Gamma_{\alpha}} \left| \sum_{i=1}^3 \mathcal{K}_{\alpha i} \mathcal{K}_{\beta i}^* I \left(\frac{m_{N_i}^2}{M_W^2} \right) \right|^2$$

[llakovac, Pilaftsis '95]

- Amplitude $\propto \left| (\mathcal{K}\mathcal{K}^{\dagger})_{\alpha\beta} \right| \simeq \mathcal{O}(|\eta_{\alpha\beta}|).$
- Compare with the type I case, where $\mathcal{KK}^{\dagger} \simeq \mathcal{O}\left(m_{\nu}M_{R}^{-1}\right)$ is strongly SUppressed, [Deppisch, Valle '05]

Lepton Flavor Violation Effects

The heavy neutrinos N_i mediate the rare lepton decays, $I_{\alpha}^- \to I_{\beta}^- \gamma$ with

$$\mathrm{BR}(I_{\alpha} \to I_{\beta} \gamma) \simeq \frac{\alpha_W^3 \mathrm{s}_W^2 m_{l_{\alpha}}^5}{256 \pi^2 M_W^4 \Gamma_{\alpha}} \left| \sum_{i=1}^3 \mathcal{K}_{\alpha i} \mathcal{K}_{\beta i}^* I \left(\frac{m_{N_i}^2}{M_W^2} \right) \right|^2$$

[llakovac, Pilaftsis '95]

- Amplitude $\propto \left| \left(\mathcal{K} \mathcal{K}^{\dagger} \right)_{\alpha\beta} \right| \simeq \mathcal{O}(|\eta_{\alpha\beta}|).$
- Compare with the type I case, where $\mathcal{KK}^{\dagger} \simeq \mathcal{O}\left(m_{\nu}M_{R}^{-1}\right)$ is strongly SUppressed, [Deppisch, Valle '05]
- Predictions in our model:

BR(
$$\mu \to e \gamma$$
) $\simeq 3.5 \times 10^{-16}$
BR($\tau \to e \gamma$) $\simeq 1.1 \times 10^{-13}$
BR($\tau \to \mu \gamma$) $\simeq 2.0 \times 10^{-12}$

lacktriangledown $\mu
ightarrow e \gamma$ within reach of future experiments, e.g. PRISM/PRIME (sensitivities down to 10^{-18}).

Leptonic *CP* Violation

Governed by the full PMNS matrix through the Jarlskog invariant

$$J_{\alpha\beta}^{ij} = \operatorname{Im}(\mathcal{N}_{\alpha i} \mathcal{N}_{\beta j} \mathcal{N}_{\alpha j}^* \mathcal{N}_{\beta i}^*)$$

(with
$$\alpha, \beta = e, \mu, \tau$$
; $i, j = 1, 2, 3$; $\alpha \neq \beta$, $i \neq j$)

To leading order in θ_{13} and η , $J_{\alpha\beta}^{ij} \simeq J + \Delta_{\alpha\beta}^{ij}$, where the unitary part is

$$J = c_{12}c_{13}^2c_{23}s_{12}s_{13}s_{23}\sin\delta$$

Leptonic *CP* Violation

Governed by the full PMNS matrix through the Jarlskog invariant

$$J_{\alpha\beta}^{ij} = \operatorname{Im}(\mathcal{N}_{\alpha i} \mathcal{N}_{\beta j} \mathcal{N}_{\alpha j}^* \mathcal{N}_{\beta i}^*)$$

(with $\alpha, \beta = e, \mu, \tau$; i, j = 1, 2, 3; $\alpha \neq \beta, i \neq j$)

• To leading order in θ_{13} and η , $J_{\alpha\beta}^{ij} \simeq J + \Delta_{\alpha\beta}^{ij}$, where the unitary part is

$$J = c_{12}c_{13}^2c_{23}s_{12}s_{13}s_{23}\sin\delta$$

• Predictions for $\Delta J_{\alpha\beta}^{ij}$ in our model:

$$\begin{split} \Delta J_{e\mu}^{12} &\simeq -2.4 \times 10^{-6}, \ \Delta J_{e\mu}^{23,31} &\simeq -2.7 \times 10^{-6}, \\ \Delta J_{u\tau}^{23,31} &\simeq 2.7 \times 10^{-6}, \ \Delta J_{\tau e}^{12} &\simeq 7.1 \times 10^{-6} \end{split}$$

Can be the dominant source of CP-violation in the leptonic sector for vanishing θ_{13} and/or vanishing δ case.

Proton Decay Rates

Dimension-5 operator contribution involving wino exchange:

$$au(p o MI) \simeq rac{\left(4.42 imes 10^{33} ext{ years}
ight)}{|f(F,D)|^2} \left(rac{10^{-14}}{|\mathcal{C}|^2}
ight) \left(rac{200 ext{ GeV}}{m_{\tilde{W}}}
ight)^2 \left(rac{M_{\tilde{f}}}{1 ext{ TeV}}
ight)^4$$

Decay	Decay Experimental		Predicted upper limit (×10 ³³ yr)		
mode	lower limit (×10 ³³ yr)	$\tan \beta = 10$	$\tan \beta = 30$		
$ ho ightarrow K^+ \overline{ u}$	2.3	2.3	2.3		
$ ho o K^0 \mu^+$	1.3	399.3	738.8		
$ ho ightarrow K^0e^+$	1.0	1.3×10^{3}	49.7		
$p o\pi^0\mathrm{e}^+$	10.1	5.8×10^{3}	230.0		
$p o\pi^0\mu^+$	6.6	2.4×10^{4}	1.3×10^{4}		
$ ho o \pi^+ \overline{ u}$	0.025	1.5	0.8		

Constraints on Universal Parameters

Allowed region in the $m_0 - m_{1/2}$ plane satisfying both proton decay and EWSB constraints:

Need $M_{\tilde{t}} \geq 1.2$ (2.1) TeV for tan $\beta = 10$ (30) to satisfy the $p \to K^+ \overline{\nu}$ constraint.

Summary

- A new SO(10) SUSY-GUT scenario with TeV scale LR inverse seesaw.
- Successful gauge coupling unification and realistic fermion mass and mixing pattern.
- Radiative symmetry breaking of B-L and electroweak symmetries.
- TeV scale W_R and Z' interesting for colliders.
- TeV scale pseudo-Dirac RH neutrinos giving rise to distinctive collider signatures.
- Leptonic non-unitarity bounds accessible at future neutrino oscillation experiments.
- Similar accessibility for $\mu \to e\gamma$ decay rate.
- Non-negligible leptonic CP-violation effects.
- Consistent with proton decay constraints for squark mass $\geq \mathcal{O}(\text{TeV})$.

